Friday 29 October 2021

EXPERIMENT 16 AIM : TO FIND THE POLARITY AND TURNS RATIO OF A SINGLE PHASE TRANSFORMER.

 OBJECTIVE 

  1. It will check polarity of  Equal as well as Nonequal Transformer.
  2. It will find transformer and its specification.
APPARATUS: 
  1. voltmeter                            2 Nos.,
  2. Testing Board,                    2 Nos,
  3. Digital Multimeter               1 Nos
  4. Transformer 240 v/110v     1 Nos
Tools
  1. Hand Tools Kit
  2. Wire Stripper
THEORY: 

It is essential to know the relative polarity at any instant of primary and secondary terminals for making correct connections. When the two transformers are to be connected in parallel to share the load on the system. The marking is correct if voltage V3 is less than V1, such a polarity is termed as subtractive polarity. The standard practice is to have subtractive polarity because it reduces the voltage stress between adjacent loads. In case V3 > V1, the EMF induced in primary and secondary have additive relation and transformer is said to have additive polarity.

CIRCUIT DIAGRAM

PROCEDURE: 

a) Polarity test:
  1.  Connect the circuit as shown in the diagram. 
  2.  Switch on the single phase a.c. supply. 
  3.  Record the voltages V1, V2 and V3. In case V3 1 polarity is additive. 
  4.  Switch off the a.c. supply 

b) Turn Ratio Test: 
  1. Connect the circuit as shown in the diagram. 
  2. Switch on the a.c. supply. 
  3. Record voltage V1 across primary and V2 across various tappings of secondary. 
  4. If V1>V2 then transformer is step down. 
  5. If V2> V1 then transformer is step up. 
  6. Switch off a.c. supply
 

RESULT: 

If V2>V1 then transformer is step up otherwise step down.

PRECAUTIONS:

1. All connections should be tight. 
2. The circuit should be according to circuit diagram. 
3. The power should be on when the circuit is checked completely



QUIZ:

Q1

What is transformer?

A1

Transformer is a static device which is used to change the level of voltage or current without changing the frequency and power.

Q2

What do you mean by turns ratio of transformer?

A2

Turns ratio of a transformer is the ratio of primary turns to the secondary turns.

Q3

What is transformation ratio of transformer?

A3

Transformation ratio is the ratio of secondary side turns to primary side turns.

Q4

What are the different polarities of transformer?

A4

Positive and negative polarity.

Q5

What is the condition of additive polarity?

A5

When the sum of voltages is more than individual voltages, then it is called additive

Q6

What is the condition for subtractive polarity.

A6

When the sum of voltages is less than individual voltages, then it is called subtractive

Q7

What are the different types of transformer?

A7

The different types of transformer are : step up and step down

Q8

What is the use of autotransformer?

A8

Autotransformer is used for increasing or decreasing the voltage with the use of one winding

Q9

What is the use of polarity test?

Q9

The polarity test is performed to find the positive and negative polarity of transformer.

 


Theory - 19 Working Principle Of Capacitor

 

કેપેસિટર (Capacitor):

કેપેસિટર ઇલેક્ટ્રિક ચાર્જ સ્ટોર કરે છે. તે બેટરી જેવું લાગે છે તે ઊર્જાને અલગ રીતે સંગ્રહિત કરે છે. તે બેટરીમાં ઘણી ઉર્જાનો સંગ્રહ કરે છે. તે ખૂબ જ ઝડપથી ચાર્જ રિલીઝ કરે છે. કેપેસિટર ખૂબ જ ઉપયોગી છે તેથી જ તેનો ઉપયોગ તમામ સર્કિટ બોર્ડમાં થાય છે.

તે મૂળભૂત નિષ્ક્રિય ઘટકોમાંનું એક છે. તે અન્ય સર્કિટ ઘટકો જેમ કે ઇન્ડક્ટર અથવા રેઝિસ્ટર અથવા અન્ય સાથે અલગથી અથવા સંયુક્ત રીતે ઉપયોગમાં લેવાય છે. પરંતુ AC પાવર સર્કિટમાં તેનો ઉપયોગ પાવર ફેક્ટર કરેક્શનમાં થાય છે. તે એક બે ટર્મિનલ ઉપકરણ છે જે વિદ્યુત ક્ષેત્રમાં ઊર્જાનો સંગ્રહ કરે છે. તે બે સમાંતર પ્લેટો ધરાવે છે.

Capacitor stores electric charge. It is looks like battery it stores energy in a different way. It is stores much energy in battery. It releases charge very faster. Capacitor is very useful that’s why it is used in all circuit boards.

It is one of the fundamental passive components. It is separately or jointly used with other circuit components such as inductor or resistor or others. But in AC Power circuit it is used in power factor correction. It is a two terminal device which stores energy in an electric field. It is consisting of two parallel plates.

કેપેસિટરના કાર્યકારી સિદ્ધાંત(Working Principle of Capacitor):

Positive Q+ as Plate A and Negative Q- as Plate B, 

પોઝિટિવ Q+ પ્લેટ A તરીકે અને નકારાત્મક Q- પ્લેટ B તરીકે,

What is Capacitor | Types of Capacitor | What is Farad | Working Principle

બે સમાંતર પ્લેટ A અને B ને ધ્યાનમાં લો, અને A વોલ્ટેજ સ્ત્રોતના હકારાત્મક ટર્મિનલ સાથે જોડાયેલ છે અને B સમાન સ્ત્રોતના નકારાત્મક ટર્મિનલ સાથે જોડાયેલ છે. ઈલેક્ટ્રોન નકારાત્મક ટર્મિનલમાંથી વહે છે અને પ્લેટ B પર એકઠા થાય છે અને નકારાત્મક ચાર્જ વિકસાવે છે, આ કારણે પ્લેટ Aમાં સમાન સંખ્યામાં હકારાત્મક ચાર્જ એકઠા થાય છે.

અહીં પ્લેટો વચ્ચેના ડાઇલેક્ટ્રિકમાં ઇલેક્ટ્રિક ક્ષેત્ર સ્થાપિત થાય છે. ઈલેક્ટ્રિક ફિલ્ડની દિશા હંમેશા ઈલેક્ટ્રોનને પોઝિટિવલી ચાર્જ્ડ પ્લેટમાંથી સ્ત્રોતના સકારાત્મક ટર્મિનલ તરફ લઈ જાય છે. પ્લેટ B પર સંગ્રહિત નકારાત્મક ચાર્જનું પ્રમાણ પ્લેટ A પરના સકારાત્મક ચાર્જના જથ્થા જેટલું છે. આને કારણે, બે પ્લેટ A અને B સમાન અને વિરોધી ચાર્જ વહન કરે છે, કારણ કે, આ બે પ્લેટોમાં એક વોલ્ટેજ છે.

ચાલો આપણે ધ્યાનમાં લઈએ કે સમગ્ર કેપેસિટરમાં વોલ્ટેજ Vc છે, અને તે લાગુ વોલ્ટેજ V ની વિરુદ્ધ છે. જેમ જેમ પ્લેટ પરનો ચાર્જ વધે છે તેમ, પ્લેટોમાંનો વોલ્ટેજ પણ એક સાથે વધે છે. તે જ સમયે, જો સમાંતર પ્લેટોમાંનો વોલ્ટેજ સ્ત્રોત વોલ્ટેજ V સુધી પહોંચે છે, તો પછી, સ્ત્રોતમાંથી ઇલેક્ટ્રોનનો પ્રવાહ થતો નથી.

Consider two parallel plates A and B, and A is connected with positive terminal of the voltage source and B is connected with a negative terminal of the same source. The electron flows from negative terminal and accumulates on the plate B developing negative charge, due to this the equal number of positive charges accumulate in plate A.

Here the electric field is established in the dielectric between the plates. The direction of electric field always drives electrons from the positively charged plate to positive terminal of the source. The amount of negative charge stored on plate B is equal to the amount of positive charge on the plate A. Due to this, the two plates A and B carry equal and opposite charges, since, there is a voltage across these two plates.

Let us consider voltage across the capacitor is Vc, and it is opposite that of applied voltage V. As the charge on the plate increases, the voltage across the plates also increases simultaneously. AT the same time, if the voltage across the parallel plates reaches to the source voltage V, then, there is not flow of electrons from the source. 



Friday 22 October 2021

Half Adder (હાફ એડર)

 

કોમ્બિનેશનલ સર્કિટ શું છે

Half adderની ખામી

Thursday 21 October 2021

Theory 18.3 Ideal Transformer ,losses, Transformation Ratio, Applications And Efficiency.

 

Ideal Transformer

The ideal transformer has no losses. 

There is no magnetic leakage flux, ohmic resistance in its windings and no iron loss in the core.

EMF Equation of Transformer

EMF Equation of Transformer

N1 – number of turns in primary.

N2 – number of turns in secondary.

Φm – maximum flux in weber (Wb).

T – time period. Time is taken for 1 cycle.

The flux formed is a sinusoidal wave. It rises to a maximum value Φm and decreases to negative maximum Φm. So, flux reaches a maximum in one-quarter of a cycle. The time taken is equal to T/4.

Average rate of change of flux = Φm/(T/4) = 4fΦm

Where f = frequency

T = 1/f

Induced emf per turn = rate of change of flux per turn

Form factor = rms value / average value

Rms value = 1.11  (4fΦm) = 4.44 fΦ[form factor of sine wave is 1.11]

RMS value of emf induced in winding = RMS value of emf per turn  x  no of turns


Primary Winding


Rms value of induced emf = E1 = 4.44 fΦm * N1

Secondary winding:

Rms value of induced emf = E2 = 4.44 fΦm * N2

Rms value of induced emf

This is the emf equation of the transformer.

For an ideal transformer at no load condition,

E1 = supply voltage on the primary winding.

E2 = terminal voltage (theoretical or calculated) on the secondary winding.


Voltage Transformation Ratio


Voltage Transformation Ratio

K is called the voltage transformation ratio, which is a constant.

Case1: if N2 > N1, K>1 it is called a step-up transformer.

Case 2: if N2< N1, K<1 it is called a step-down transformer.


Transformer Efficiency


Comparing system output with input will confirm transformer efficiency. The system is called better when its efficiency is high.

Efficiency\left ( \eta \right ) = \frac{Output power}{Input power}\times 100
Efficiency\left ( \eta \right ) = \frac{P_{out}}{P_{out}+ P_{loses}}\times 100
Efficiency\left ( \eta \right ) = \frac{V_{2}I_{2}cos\theta }{V_{2}I_{2}cos\theta + P_{c} +P_{cm}}\times 100
Where Pcu = Psc


            Pc = Poc



\eta(_{full load}) = \frac{VAcos\theta }{VAcos\theta + P_{c} + P_{cm}}\times 100
\eta(_{load n}) = \frac{nVAcos\theta }{nVAcos\theta + P_{c} + n^{2}P_{cm}}\times 100

Applications Of Transformer


  • The transformer transmits electrical energy through wires over long distances.
  • Transformers with multiple secondary’s are used in radio and TV receivers which require several different voltages.
  • Transformers are used as voltage regulators.

Popular Posts